
Analysis Correlation Engine
Documentation

Release 0.0.1

John Davison

Jul 26, 2019

Contents:

1 Major Features 3
1.1 Installation + Adding Data . 4

1.1.1 Super fast How-To . 4
1.1.2 Detailed Installation . 4
1.1.3 Troubleshooting & Help . 6
1.1.4 Getting Data into ACE . 6

1.2 Analyst Orientation - Start Here . 7
1.2.1 Quick Concept Touchpoint . 7
1.2.2 GUI Overview . 12
1.2.3 Working Alerts . 12

1.3 ACE API Examples . 20
1.3.1 Connect to a Server . 22
1.3.2 Submitting data to ACE . 22
1.3.3 Forcing Alert Creation . 24
1.3.4 Downloading Cloudphish Results . 25
1.3.5 Downloading an Alert . 25

1.4 ACE API . 25
1.4.1 Python Library . 25
1.4.2 Common API . 25
1.4.3 Alert API . 25

1.5 Some Background . 26
1.5.1 Driving Behavior . 26

1.6 Additional Features . 27
1.6.1 Events . 27
1.6.2 Metrics . 28

1.7 Administration Guide . 28
1.7.1 Concepts . 28
1.7.2 Turning on Engines . 29
1.7.3 Enabling Modules . 30

1.8 Development Guide . 32
1.9 Developer README . 32

1.9.1 SAQ = ACE . 32
1.9.2 Eveything was initially command line driven. 32
1.9.3 This was an internal project. 32
1.9.4 The database came later. 32
1.9.5 Unit testing. 33

i

1.9.6 Final words. 33

2 Indices and tables 35

ii

Analysis Correlation Engine Documentation, Release 0.0.1

Release v0.0.1.

ACE is a detection system and automation framework. At ACE’s foundation are its engines for recursive analysis and
its delivery of an intuitive presentation to the analyst. ACE’s goal is to reduce the analyst’s time-to-disposition to as
close to zero as humanly possible.

While ACE is a powerful detection system, and does have built in detections, ACE does not ship with all of the yara
signatures and intel detections that teams have built around it. However, ACE makes it easy to load your own yara
signatures and atomic indicator detections.

Alerts are sent to ACE, and ACE handles the ordinary, manual, redundant, and repetitive tasks of collecting, combining,
and relating data. ACE will then contextually and intuitively present all the right data to the analyst, allowing for a
quick, high confidence determination to be made.

Got some new analysis that can be automated? Awesome! Add your automation, and let ACE keep working for you.

Fig. 1: Recursive Analysis; Presentation

For the most part, custom hunting tools send alerts to ACE using ACE’s client library (API wrapper). ACE then gets to
work by taking whatever detectable conditions it’s given and spiraling out through its recursive analysis of observables,
hitting as many detection points as possible across the attack surface.

Regardless of skill level, ACE greatly reduces the time it takes an analyst to make a high confidence determination,
or as we call it, disposition. This reduction in time-to-disposition, coupled with the appropriate hunting and tuning
mindset, means that security teams can greatly increase the attack surface they cover, all while utilizing the same
amount of analyst time and practically eliminating alert fatigue. Optimization good, alert fatigue bad.

Contents: 1

Analysis Correlation Engine Documentation, Release 0.0.1

2 Contents:

CHAPTER 1

Major Features

ACE is the implementation of a proven detection strategy, a framework for automating analysis, a central platform to
launch and manage incident response activates, an email scanner, and much more.

• Email Scanning

• Recursive File Scanning

• URL Crawling and Content Caching

• Intuitive Alert Presentation

• Recursive Data Analysis & Correlation

• Central Analyst Interface

• Event/Incident management

• Intel Ingestion

• Modular Design for extending automation

3

Analysis Correlation Engine Documentation, Release 0.0.1

1.1 Installation + Adding Data

1.1.1 Super fast How-To

1. Clean Ubuntu 18 install. Take a quick look at these notes about Ubuntu 18.

2. Create username/group ace/ace.

3. Add ace to sudo.

4. Login as user ace.

5. sudo mkdir /opt/ace && sudo chown ace:ace /opt/ace && cd /opt/ace

6. git clone https://github.com/IntegralDefense/ACE.git .

7. ./installer/source_install

8. source load_environment

9. ./ace add-user username email_address

10. Goto https://127.0.0.1/ace/ or whatever IP address you’re using.

1.1.2 Detailed Installation

4 Chapter 1. Major Features

https://github.com/IntegralDefense/ACE/wiki/Ubuntu-18-Installation-Notes
https://127.0.0.1/ace/

Analysis Correlation Engine Documentation, Release 0.0.1

Install Ubuntu Server 18.04 LST

The size specifications for your server need to be based on your needs. At a minimum, the server should have 4 GB
RAM and 20 GB storage drive. When installing the server, all of the default configurations are fine.

Getting Everything Ready

The ace User

$ sudo adduser ace
$ sudo adduser ace sudo
$ sudo su - ace
$ sudo chown ace:ace /opt

Cloning ACE

As the ace user you previously created, cd into /opt and git clone the IntegralDefense ACE master branch: https:
//github.com/IntegralDefense/ACE.git:

$ cd /opt
$ git clone https://github.com/IntegralDefense/ACE.git ace

Run the Installer

With everything ready, you can now run the ACE installer. Run the installer as the ace user. This will take a little
while to complete.

$ cd /opt/ace
$./installer/source_install

Set Up Environment

Next, you will need to load the default environment variables ACE depends on. This load needs to be sourced from
bash with the following command:

$ source load_environment

Create Users

Users are managed from the ACE command line with the following ace commands:

add-user Add a new user to the system.
modify-user Modifies an existing user on the system.
delete-user Deletes an existing user from the system.

Create your first user so that you can log into the ACE GUI:

./ace add-user <username> <email_address>

1.1. Installation + Adding Data 5

https://github.com/IntegralDefense/ACE.git
https://github.com/IntegralDefense/ACE.git

Analysis Correlation Engine Documentation, Release 0.0.1

Log into the GUI

You should now be able to browse to https://your_ip/ace/ and log into ACE with the user you previously created.

1.1.3 Troubleshooting & Help

There are a couple snags and gotchas that you can run into when installing ACE. This section will detail a few, but it’s
still a work in process. So, please send any issues or questions to ace-support@integraldefense.com. Please include as
much detail as possible and we will get back to you as soon as we can. Thanks!

No Web GUI?

Make sure apache2 is running and the /etc/apache2/sites-enabled/ace.conf configuration is loaded.
The ace.conf should be a symlink in /etc/apache2/sites-available that points to /opt/ace/etc/
saq_apache.conf.

Alerts staying in ‘NEW’ status?

Make sure the ACE engine is running. You can do this by running the following:

cd /opt/ace && bin/start-correlation-engine

Start ACE

You should now have a working installation, but you need to start ACE’s core (the correlation engine) this is ac-
complished with the bin/start-correlation-engine command. You can also use the bin/start-ace
command, which start the correlation engine and attempt to start some other ACE collectors/services. You will get
some errors if you don’t have those other services configured (which you probably won’t at this point). Those er-
rors are nothing to be concerned about, however, if you do not want to see those errors you can explicitly start the
correlation engine you need like so:

cd /opt/ace && bin/start-correlation-engine

1.1.4 Getting Data into ACE

A bare-bones ACE install is not going to be very effective by itself, much less without data. You can use the Manual
Analysis section to submit observables to ACE. However, you’re going to want to turn on some of the additional
Engines and Modules that come with ACE by default. Firt, turning on the Correlation Engine is essential. Some
other good engines to turn on first are the CloudPhish engine and the Email Scanning engine and if you’ve got yara
signatures, definitely turn on the Yara Scanner module. See the Administration Guide for more details on the various
engines, modules, and how to turn them on.

Manual Analysis

Via the Manual Analysis page, an analyst can submit an observable for ACE to analyze.

By default, the Insert Date is set to the current time, and the Description is set to ‘Manual Correlation’. You can change
the description to something meaningful. The Target Company will also be set to default, which should be fine for
most ACE installations.

6 Chapter 1. Major Features

https://your_ip/ace/
mailto:ace-support@integraldefense.com

Analysis Correlation Engine Documentation, Release 0.0.1

Fig. 1: Observables can be submitted for analysis via the Manual Analysis page

Select the type of observable you wish to correlate and then provide the value. Click the Add button to correlate more
than one observable type and/or value at a time.

Shortly after you’ve submitted your observable(s) for correlation, you will see your alert appear on the Manage Alerts
page with the description you provided. The alert status will change to ‘Complete’ once ACE is finished performing
its analysis. You must currently refresh the Manage Alerts page to see the alert status updates.

Using the API

ACE has an API that makes it simple to submit data to ACE for analysis and/or correlation. Check out the ACE API
Examples and ACE API section for more information.

1.2 Analyst Orientation - Start Here

Keep this in mind when working ACE alerts: ACE is meant to enable the analyst to QUICKLY disposition false
positive alerts and recognize true positives.

For convenience, here is a video recording that provides a tour of the ACE GUI and demonstrates how to work some
ACE alerts. Many of the concepts in this orientation are covered.

1.2.1 Quick Concept Touchpoint

There are two core concepts an analyst must be familiar with when working ACE alerts: Observables and Disposition-
ing.

Observables

Observables are anything an analyst might “observe” or take note of during an investigation or when performing Alert
Triage. For instance, an IP address is an observable, and a file name is a different type of observable. Some more

1.2. Analyst Orientation - Start Here 7

Analysis Correlation Engine Documentation, Release 0.0.1

observable types are: URLs, domain names, usernames, file hashes, file names, file paths, email addresses, and Yara
signatures.

ACE knows what kind of analysis to perform for a given observable type and how to correlate the value of an ob-
servable across all available data sources. In the process of correlating observables with other data sources, ACE will
discover more observables to analyze and correlate.

When an ACE alert is created from an initial detection point, the alert’s ‘root’ level observables are found in the output
of that initial detection. ACE then gets to work on those root observables. An ACE alert’s status is complete when
ACE is finished with its recursive analysis, correlation, discovery, and relational combination of observables. The
result is an ACE alert with intuitive context ready for the analyst’s consumption.

The figure below is meant to give a visual representation ACE’s recursive observable analysis and correlation.

Fig. 2: Recursive Observable Analysis

ACE’s recursive analysis of observables reduces and simplifies the analyst’s workload by providing the analyst with
as much available context as reasonably possible. A complete list of currently defined observable types can be viewed
in the table below.

8 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

Currently defined ACE Observables:

Observable
Type

Description

asset An F_IPV4 identified to be a managed asset
email_address Email address
email_conversation A conversation between a source email address (MAIL FROM) and a destination email address

(RCPT TO)
file Path to an attached file
file_location The location of file with format hostname@full_path
file_name A file name (no directory path)
file_path A file path
fqdn Fully qualified domain name
hostname Host or workstation name
indicator CRITs indicator object ID
ipv4 IP address (version 4)
ipv4_conversation Two F_IPV4 that were communicating formatted as aaa.bbb.ccc.ddd_aaa.bbb.ccc.ddd
md5 MD5 hash
message_id Email Message-ID
process_guid CarbonBlack global process identifier
sha1 SHA1 hash
sha256 SHA256 hash
snort_sig Snort signature ID
url A URL
user An NT user ID identified to have used a given asset in the given period of time
yara_rule Yara rule name

Alert Dispositioning

When investigating an alert, there is a categorization model for analysts to follow called dispositioning. No matter if
an alert requires a response or not, analysts need to disposition them correctly. Sometimes, especially for true positive
alerts that get escalated, more information may lead a change in an alert’s disposition. The disposition model that
ACE uses is based on Lockheed Martin’s Cyber Kill Chain ® model for identifying and describing the stages of an
adversary’s attack. The table below describes each of the different dispositions used by ACE.

1.2. Analyst Orientation - Start Here 9

mailto:hostname@full_path
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

Analysis Correlation Engine Documentation, Release 0.0.1

10 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

Disposition Description / Example
FALSE_POSITIVE Something matched a detection signature, but that

something turned out to be nothing malicious.
• A signature was designed to detect something

specific, and this wasn’t it.
• A signature was designed in a broad manner and,

after analysis, what it detected turned out to be
benign.

IGNORE This alert should have never fired. A match was made
on something a detection was looking for but it was ex-
pected or an error.

• Security information was being transferred
• An error occurred in the detection software gen-

erating invalid alerts
• Someone on the security team was testing some-

thing or working on something
It is important to make the distinction between
FALSE_POSITIVE and IGNORE dispositions, as alerts
marked FALSE_POSITIVE are used to tune detection
signatures, while alerts marked as IGNORE are not. IG-
NORE alerts are deleted by cleanup routines.

UNKNOWN Not enough information is available to make a good de-
cision because of a lack of visibility.

REVIEWED This is a special disposition to be used for alerts that
were manually generated for analysis or serve an infor-
mational purpose. For example, if someone uploaded a
malware sample from a third party to ACE, you would
set the disposition to REVIEWED after reviewing the
analysis results. Alerts set to REVIEWED do not count
for metrics and are not deleted by cleanup routines.

GRAYWARE Software that is not inherently malicious but exhibits
potentially unwanted or obtrusive behavior.

• Adware
• Spyware

If desired, this disposition can be used to categorize
spam emails.

POLICY_VIOLATION In the course of an investigation, general risky user be-
havior or behavior against an official policy or standard
is discovered.

• Installing unsupported software
• Connecting a USB drive with pirated software
• Browsing to pornographic sites

RECONNAISSANCE Catching the adversary planning, gathering intel, or re-
searching what attacks may work against you.

• Vulnerability and port scanning
• Attempts to establish trust with a user

WEAPONIZATION The detection of an attempt to build a cyber attack
weapon.

• Detecting an advesary building a malicious docu-
ment using VT threat hunting

DELIVERY An attack was attempted, and the attack’s destination
was reached. Even with no indication the attack worked.

• A user browsed to an exploit kit
• A phish was delivered to the email inbox
• AV detected and remediated malware after the

malware was written to disk

EXPLOITATION An attack was DELIVERED and there is evidence that
the EXPLOITATION worked in whole or in part.

• A user clicked on a malicious link from a phish
• A user opened and ran a malicious email attach-

ment
• A user hit an exploit kit, a Flash exploit was at-

tempted

INSTALLATION An attack was DELIVERED and the attack resulted in
the INSTALLATION of something to maintain persis-
tence on an asset/endpoint/system.

• A user browsed to an exploit kit and got malware
installed on their system

• A user executed a malicious email attachment and
malware was installed

• Malware executed off a USB and installed persis-
tence on an endpoint

COMMAND_AND_CONTROL An attacker was able to communicate between their con-
trol system and a compromised asset. The adversary has
been able to establish a control channel with an asset.
Example Scenario: A phish is DELIVERED to an in-
box, and a user opens a malicious Word document that
was attached. The Word document EXPLOITS a vul-
nerability and leads to the INSTALLATION of mal-
ware. The malware is able to communicate back to the
attackers COMMAND_AND_CONTROL server.

EXFIL A form of action on objectives where an objective is an
adversaries goal for attacking. EXFIL indicates the loss
of something important.

• Adversaries steals information by uploading files
to their control server

• A user submits login credentials to a phishing
website

DAMAGE A form of action on objectives where an objective is an
adversaries goal for attacking. DAMAGE indicates that
damage or disruption was made to an asset, the network,
the company, or business operations.

• An attacker steals money by tricking an employee
to change the bank account number of a customer

• Ransomware encrypts multiple files on an asset
• PLC code is modified and warehouse equipment

is broken
• Process Control Systems are tampered with and a

facility must shutdown until repairs are made
• A public facing website is compromised and de-

faced or serves malware to other victums

1.2. Analyst Orientation - Start Here 11

Analysis Correlation Engine Documentation, Release 0.0.1

1.2.2 GUI Overview

Analysts interact with ACE through its graphical interface and specifically use the Manage Alerts page. After you’re
logged into ACE (Assuming you already have an account), you’ll see a navigation bar that looks like the following
image. A a simple breakdown of each page on that navigation bar is provided below.

Fig. 3: ACE’s Navigation Bar

Page Function
Overview General ACE information, performance, statistics, etc.
Manual Analysis Where analysts can manually upload or submit observables for ACE to analyze
Manage Alerts The alert queue - where the magic happens
Events Where events are managed
Metrics For creating and tracking metrics from the data ACE generates

1.2.3 Working Alerts

This section covers the basics for working and managing ACE alerts. If you’re comfortable, skip ahead to the Examples
section to find a walkthrough of a few ACE alerts being worked.

The Manage Alerts Page

ACE alerts will queue up on the Manage Alerts page. By default, only alerts that are open (not dispositioned) and
not owned by another analyst are displayed. When working an alert, analysts should take ownership of it to prevent
other analysts from starting to work on the same alert. This prevents re-work and saves analyst time. You can take
ownership of one or more alerts on the Manage Alerts page by selecting alert checkboxes and clicking the ‘Take
Ownership’ button. You can also take ownership when viewing an individual alert. Below is an example of the
Manage Alerts page with 32 open and unowned alerts.

Viewing Observable Summary

On the Manage Alerts page, each alert can be expanded via its dropdown button. Once expanded, all the observables in
the alert can be viewed. The observables are grouped and listed by their observable type. The numbers in parentheses
show a count of how many times ACE has seen that observable. Each observable is clickable, and when clicked, ACE
will add that observable to the current alert filter. You don’t need to worry about alert filtering to work alerts, however,
the Filtering and Grouping section covers Alert filtering.

Expand/Collapse Observables

- email_address
- fakeuser@fakecompany.com (21)
- tfry@kennyross.com (2)

- email_conversation
- tfry@kennyross.com|fakeuser@fakecompany.com (1)

- file
- 308591a9db1d3b8739e53feaf3dd5ba069f7191125cf3bb7e2c849bad2182e98.vxstream/dropped/

→˓1LSZPI0TG6C82HTABETK.temp (1)
- 308591a9db1d3b8739e53feaf3dd5ba069f7191125cf3bb7e2c849bad2182e98.vxstream/dropped/

→˓Kenny_Ross_Inquiry.LNK (1) (continues on next page)

12 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

Fig. 4: Manage Alerts page

Fig. 5: An expanded alert shows it observables

1.2. Analyst Orientation - Start Here 13

Analysis Correlation Engine Documentation, Release 0.0.1

(continued from previous page)

- 308591a9db1d3b8739e53feaf3dd5ba069f7191125cf3bb7e2c849bad2182e98.vxstream/dropped/
→˓index.dat (1)
- 308591a9db1d3b8739e53feaf3dd5ba069f7191125cf3bb7e2c849bad2182e98.vxstream/dropped/

→˓urlref_httpvezopilan.comtstindex.phpl_soho7.tkn_.Split (1)
- Kenny_Ross_Inquiry.doc (9)
- Kenny_Ross_Inquiry.doc.officeparser/iYzcZYMdfv.bas (2)
- Kenny_Ross_Inquiry.doc.officeparser/oUDOGruwp.bas (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_10_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_11_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_12_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_13_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_14_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_15_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_16_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_17_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_18_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_19_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_1_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat.extracted/WXRIK/WXRIK/WXRIK1.

→˓lrA (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat.extracted/WXRIK/WXRIK/

→˓WXRIKManager.lrA (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat.extracted/WXRIK/WXRIK/_pPOR/

→˓WXRIKManager.lrA.pPOR (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat.extracted/[Content_Types].lrA

→˓(2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_2_0.dat.extracted/_pPOR/.pPOR (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_3_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_4_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_5_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_8_0.dat (2)
- Kenny_Ross_Inquiry.doc.officeparser/stream_9_0.dat (2)
- Kenny_Ross_Inquiry.doc.olevba/macro_0.bas (2)
- Kenny_Ross_Inquiry.doc.olevba/macro_1.bas (2)
- Kenny_Ross_Inquiry.doc.pcode.bas (2)
- email.rfc822 (37952)
- email.rfc822.headers (37949)
- email.rfc822.unknown_text_html_000 (3229)
- email.rfc822.unknown_text_html_000_000.png (2482)
- email.rfc822.unknown_text_plain_000 (37354)
- filename.PNG (11)

- indicator
- 55c36786bcb87f2d54cf15da (369)
- 57ffd02cbcb87fbb1464b1ce (88)
- 58c9708aad951d7387c65be2 (274)
- 58e3e8dfad951d49aabb1622 (384)
- 58ee209dad951d09a1ee3860 (92)
- 58ee221dad951d09a0b13e99 (92)
- 5937f5d4ad951d4fe8787c63 (672)
- 599db056ad951d5cb2c4768b (302)
- 599dd8abad951d5cb3204569 (155)
- 59a7fcc7ad951d522eeef8ed (380)

- ipv4
- 104.118.208.249 (24)

- md5
- 2307a1a403c6326509d4d9546e5f32ab (2)

(continues on next page)

14 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

(continued from previous page)

- 267b1bd0ae8194781c373f93c9df02fa (2)
- 39ee938f6fa351f94a2cbf8835bb454f (2)
- 5c4c76cbb739c04fb3838aff5b2c25bb (2)
- 65811d8f7c6a1b94eab03ba1072a3a7e (2)
- b3b8bf4ed2c5cb26883661911487d642 (2)
- d8a7ea6ba4ab9541e628452e2ad6014a (2)

- message_id
- <8de41f6eb57ac01b2a90d3466890b0a1@127.0.0.1> (1)

- sha1
- 03484a568871d494ad144ac9597e9717a2ae5601 (2)
- 2e3b95bb9b0beb5db3487646d772363004505df6 (2)
- 33b9d3de33adc5bd5954c1e9f9e48f10eabe7c49 (2)
- 62837876eb5ec321e6d8dbd6babd0d5789230b60 (2)
- b3024c6f598b1745ca352ac3a24cc3603b814cad (2)
- cfe4f07fbf042b4f7dce44f9e6e3f449e02c123a (2)
- fa47ebc1026bbe8952f129480f38a011f9faf47d (2)

- sha256
- 308591a9db1d3b8739e53feaf3dd5ba069f7191125cf3bb7e2c849bad2182e98 (2)
- 50aef060b9192d5230be21df821acb4495f7dc90416b2edfd68ebebde40562be (2)
- 62be2fe5e5ad79f62671ba4b846a63352d324bb693ee7c0f663f488e25f05fe0 (2)
- 8159227eb654ef2f60eb4c575f4a218bb76919ea15fdd625c2d01d151e4973f3 (2)
- 9c7e06164ec59e76d6f3e01fa0129607be1d98af270a09fd0f126ee8e16da306 (2)
- ae67f33b6ff45aecf91ff6cac71b290c27f791ccbe4829be44bd64468cbe3f5d (2)
- ca797ec10341aebaed1130c4dbf9a5b036945f17dd94d71d46f2f81d9937504f (2)

- url
- http://schemas.openxmlformats.org/drawingml/2006/main (3796)

- user
- fake_user_id (17)

- yara_rule
- CRITS_EmailContent (4478)
- CRITS_StringOffice (1685)
- CRITS_StringVBS (6592)
- CRITS_StringWindowsShell (1770)
- macro_code_snippet (1013)
- macro_overused_legit_functions (82)

Above, you can click to expand a text based example of an alerts observable structure when expanded on the Manage
Alerts page.

Filtering and Grouping

On the Manage Alerts page, alerts are filtered by default to show open alerts that are not currently owned by any other
analysts. The current filter state is always displayed at the top of the page, in a human readable format. You can select
‘Edit Filters’ to modify the alert filter and display alerts based on several different conditions. For example, you can
change the filters to see alerts dispositioned as DELIVERY over the past seven days by a specific analyst.

Alerts can also be filtered by observables. Conveniently, when viewing an alert’s Observable Summary on the Manage
Alerts page, you can click any of those observables to add it to the currently defined alert filter. So, with the default
filter applied, if you clicked on an MD5 observable with value 10EFE4369EA344308416FB59051D5947 then the
page would refresh and you’d see that the new filter became:

filter: open alerts AND not owned by others AND with observable type md5 value b
→˓'10EFE4369EA344308416FB59051D5947'`

1.2. Analyst Orientation - Start Here 15

Analysis Correlation Engine Documentation, Release 0.0.1

The Alert Page

Once an alert is opened, the full analysis results will be displayed. It’s usually a good idea to go ahead and view all of
the alert’s analysis.

Views

There are two different modes in which you can view ACE alerts: ‘Critical’ and ‘All’. By default, ACE alerts will be
displayed in critical mode. Critical mode will only display ‘root’ level alert observable analysis. This is helpful for
alerts with a lot of observables, although it’s generally helpful to view all alert analysis. At the top right of every alert
you will see a button to “View All Analysis” or “View Critical Analysis”. Whichever mode you have enabled will be
persistent across your ACE session.

Be mindful of these different views, as it’s possible for an analyst to miss helpful information if viewing an alert in
critical mode compared to all mode.

Analysis Overview

Each standard ACE alert will have analysis overview section where the analysis results for every Observable will be
found. The observables displayed at the ‘root’ level are the ones that were directly discovered in the data provided
to ACE at the time of the alert’s creation. Underneath each observable you will find the analysis results for that
respective observable. You may also find new observables that were added to the alert from the recursive analysis of
other observables. This observable nesting on the alert page provides a visual representation of how alert observables
are related. The figure below shows the analysis overview section of an ACE Mailbox (email) alert. You can see that
a user observable of value ‘fake-user-id’ was discovered from the analysis results of the email_address Observable.

Alert Tags

ACE has a tagging system by which observables and analysis are tagged for the purpose of providing additional
context. If you review the previous figure of Manage Alerts page, you will notice tags such as phish, new_sender, and
frequent_conversation associated to various alerts.

All observable tags get associated with their respective alert and show up on the alert management page. Any ob-
servable can be tagged and can have any number of tags. For instance, an email conversation between two addresses
that ACE has seen a lot will be tagged as ‘frequent_conversation’. Tags can also be added directly to alerts from the
Manage Alerts page. This can be helpful for Filtering and Grouping alerts if an analyst needs a way to group alerts
that don’t otherwise have a commonly shared tag or observable.

Examples

The following are examples of a snarky analyst working ACE alerts. Think about the first intuition you get from what
you see in these alerts.

Check out this Email Alert

We just got this alert in the queue. Huh, looks like this email might be related to a potentially malicious zip file.

Let’s open the alert and look at the Analysis Overview section to see the results ACE brought us. In the case of email
alerts like this one, the ‘email.rfc882’ file is what ACE was given when told to create this alert.

Under that email.rfc882 file observable you will see the output of the Email Analysis module, and underneath Email
Analysis you will see where ACE discovered more observables, such as the email addresses.

16 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

Fig. 6: The Analysis Overview section of an email alert

1.2. Analyst Orientation - Start Here 17

Analysis Correlation Engine Documentation, Release 0.0.1

18 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

With respect to this alert, ACE conveniently rendered us a visual image of the email’s HTML body. That rendering
lets us quickly see that the sender is thanking the recipient for their purchase. It seems doubtful to me that the user
really purchased anything, so this email seems awfully suspicious. Note that we can also view or download that
‘email.rfc822.unknown_text_html_000’ file by using the dropdown next to it.

Scrolling down on the same alert from the example above, we see the ‘URL Extraction Analysis’ found some URL
observables. Moreover, we see that ACE found additional observables in the analysis output of those URL observ-
ables. Specifically, ACE downloaded that ‘66524177012457.zip’ file and extracted it to reveal an executable named
‘66524177012457.exe’.

Hm, this email doesn’t seem friendly at all. Perhaps that malicious tag was onto something. . . where did that tag
come from? Oh, it’s next to the MD5 observable of the file, which I know ACE checks VirusTotal for, and one of
the analysis results under that MD5 observable shows the VT result summary. Got it. Definitely malicious. Someone
should do something about this.

We got another Email Alert

We just got this email alert. Judging by the tags, I’m assuming an office document is attached. It’s probably an open
xml office document too, since the zip tag is present. I’m assuming this because I know open xml office documents
are zipped up. Of course, there could be a stand-alone zip file in the email too. Let’s look and see.

1.2. Analyst Orientation - Start Here 19

Analysis Correlation Engine Documentation, Release 0.0.1

When we open the alert, we see the alert header at the top. Hmm, this email alert only has one detection. Either this is
really good phish and something we barely catch, or it’s a false positive.

Let’s scroll down and find that single detection. Oh, I just noticed that we’re only viewing this alert’s critical analysis.

We could click on the “View All Analysis” button if we wanted to view all of its analysis results. However, for this
alert, the critical view makes it easy to find the single detection. Detections are marked by a little red flame icon. Here
we see that the flame is highlighting a yara rule that detected something in the analysis of the “Glenn Resume.docx”
file. Speaking of that file, we were right about assuming it was an open xml office document.

Look at this, ACE tagged the rels_remote_references yara rule with high_fp_frequency. That tells us that this specific
yara rule has a high frequency of showing up in false positive alerts. Below the rule, we see that the “Malicious
Frequency Analysis” module found the rels_remote_references yara rule only appeared in four true-positive alerts out
of two hundred and ten! I don’t know about you, but my gut is telling me this email alert is a false positive. Let’s make
sure though and click to view the “Yara Scan Results”.

Above we can see what the yara rule detected in this docx file. And what do we see? A target reference to a file, and
when looking closer we see that the file being referenced was named “Resume Template.dotm”. I bet this dotm file
is a leftover artifact from Glenn using a resume template when creating this “Glenn Resume.docx” file. I’m already
clicking the “Disposition” button and marking this alert FALSE_POSITIVE.

Now that we’ve reviewed this email alert, I want to harp on how QUICKLY we should be able to disposition it.

If you’re curious, the rels_remote_references yara rule was created to detect references to URLs or files in an open
xml document’s template. Such references can and have been malicious. An example would be a Microsoft Word
document that references a URL and causes word to display an authentication dialog to the end-user for the purpose
of harvesting the user’s credentials. This repository contains a GO script that makes it easy to do that very thing:
https://github.com/ryhanson/phishery

1.3 ACE API Examples

Let’s go through a few examples using the ACE API. We will specifically use the ace_api python library.

20 Chapter 1. Major Features

https://github.com/ryhanson/phishery

Analysis Correlation Engine Documentation, Release 0.0.1

1.3. ACE API Examples 21

Analysis Correlation Engine Documentation, Release 0.0.1

1.3.1 Connect to a Server

By default, the ace_api library will attempt to connect to localhost. Use the ace_api.
set_default_remote_host() function to have the library connect to a different server. The OS’s certificate
store is used to validate the server. See ace_api.set_default_ssl_ca_path() to change this behavior.

>>> import ace_api

>>> server = 'ace.integraldefense.com'

>>> ace_api.set_default_remote_host(server)

>>> ace_api.ping()
{'result': 'pong'}

You can over-ride this default in the ace_api.Analysis() class with the ace_api.Analysis.
set_remote_host() method and you can also manually specify a remote host with any submit.

>>> analysis = ace_api.Analysis('this is the analysis description')

>>> analysis.remote_host
'ace.integraldefense.com'

>>> analysis.set_remote_host('something.else.com').remote_host
'something.else.com'

>>> ace_api.default_remote_host
'ace.integraldefense.com'

If your ACE instance is listening on a port other than 443, specify it like so:

>>> ace_api.set_default_remote_host('ace.integraldefense.com:24443')

>>> ace_api.default_remote_host
'ace.integraldefense.com:24443'

1.3.2 Submitting data to ACE

You should submit data to ace by first creating an Analysis object and loading it with the data you want to submit for
analysis and/or correlation. The below examples show how to perform some common submissions.

Submit a File

Say we have a suspect file in our current working director named “Business.doc” that we want to submit to ACE.
First, we create an analysis object and then we pass the path to the file to the ace_api.Analysis.add_file()
method. We will also include some tags and check the status (ace_api.Analysis.status()) of the analysis as
ACE works on the submission.

>>> path_to_file = 'Business.doc'

>>> analysis.add_file(path_to_file)
<ace_api.Analysis object at 0x7f23d57e74e0>

>>> analysis.add_tag('Business.doc').add_tag('suspicious doc')

(continues on next page)

22 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

(continued from previous page)

<ace_api.Analysis object at 0x7f23d57e74e0>

>>> analysis.submit()
<ace_api.Analysis object at 0x7f23d57e74e0>

>>> analysis.status
'NEW'

>>> analysis.status
'ANALYZING'

>>> analysis.status
'COMPLETE (Alerted with 8 detections)'

>>> result_url = 'https://{}/ace/analysis?direct={}'.format(analysis.remote_host,
→˓analysis.uuid)

>>> print("\nThe results of this submission can be viewed here: {}".format(result_
→˓url))

The results of this submission can be viewed here: https://ace.integraldefense.com/ace/analysis?direct=
137842ac-9d53-4a25-8066-ad2a1f6cfa17

Submit a URL

Two examples of submitting a URL to ACE follow. The first example shows how to submit a URL by adding the URL
as an observable to an Analysis object. This also allows us to demontrate the use of directives. The second example
shows how simple it is to submit a URL for analysis directly to Cloudphish.

As an observable

You can submit as many observables as you desire in a submission to ACE, but they won’t neccessarily get passed to
every analysis module that can work on them by default. This is the case for URL observables, which by themselves,
require the crawl directive to tell ACE you want to download the conent from the URL for further analysis.

Submititing a request for a suspicious URL to be analyzed, note the use of the crawl directive and how to get a list of
the valid directives.

>>> suspicious_url = 'http://davidcizek.cz/Invoice/ifKgg-jrzA_PvC-a7'

>>> analysis = ace_api.Analysis('Suspicious URL')

>>> analysis.add_tag('suspicious_url')
<ace_api.Analysis object at 0x7f23d57e7588>

>>> for d in ace_api.get_valid_directives()['result']:
... if d['name'] == 'crawl':
... print(d['description'])
...
crawl the URL

>>> analysis.add_url(suspicious_url, directives=['crawl']).submit()
<ace_api.Analysis object at 0x7f23d57e7588>

(continues on next page)

1.3. ACE API Examples 23

https://ace.integraldefense.com/ace/analysis?direct=137842ac-9d53-4a25-8066-ad2a1f6cfa17
https://ace.integraldefense.com/ace/analysis?direct=137842ac-9d53-4a25-8066-ad2a1f6cfa17

Analysis Correlation Engine Documentation, Release 0.0.1

(continued from previous page)

>>> analysis.status
'COMPLETE (Alerted with 9 detections)'

>>> result_url = 'https://{}/ace/analysis?direct={}'.format(analysis.remote_host,
→˓analysis.uuid)

>>> print("\nThe results of this submission can be viewed here: {}".format(result_
→˓url))

The results of this submission can be viewed here: https://ace.integraldefense.com/ace/analysis?direct=
de66b2d3-f273-4bdd-a05b-771ecf5c8a76

Using Cloudphish

If you just want ACE to analyze a single URL, it’s best to submit directly to Cloudphish. In this example, a URL is
submitted to cloudphish that cloudphish has never seen before and a ‘NEW’ status is returned. After cloudphish has
finished analyzing the URL, the status changes to ‘ANALYZED’ and the analysis_result tells us at least one detection
was found (as we alerted).

>>> another_url = 'http://medicci.ru/myATT/tu8794_QcbkoEsv_Xw20pYh7ij'

>>> cp_result = ace_api.cloudphish_submit(another_url)

>>> cp_result['status']
'NEW'

>>> # Query again, a moment later:
...
>>> cp_result = ace_api.cloudphish_submit(another_url)

>>> cp_result['status']
'ANALYZED'

>>> cp_result['analysis_result']
'ALERT'

>>> result_url = 'https://{}/ace/analysis?direct={}'.format(ace_api.default_remote_
→˓host, cp_result['uuid'])

>>> print("\nThe results of this submission can be viewed here: {}".format(result_
→˓url))

The results of this submission can be viewed here: https://ace.integraldefense.com/ace/analysis?direct=
732ec396-ce20-463f-82b0-6b043b07f941

1.3.3 Forcing Alert Creation

By default, ACE alerts are only created if an detection is made in the initially submitted analysis. You can force alert
creation by changing the default analysis mode from analysis to correlation. This is accomplished like so:

>>> analysis = ace_api.Analysis('This is an analysis with no detections', analysis_
→˓mode='correlation')

(continues on next page)

24 Chapter 1. Major Features

https://ace.integraldefense.com/ace/analysis?direct=de66b2d3-f273-4bdd-a05b-771ecf5c8a76
https://ace.integraldefense.com/ace/analysis?direct=de66b2d3-f273-4bdd-a05b-771ecf5c8a76
https://ace.integraldefense.com/ace/analysis?direct=732ec396-ce20-463f-82b0-6b043b07f941
https://ace.integraldefense.com/ace/analysis?direct=732ec396-ce20-463f-82b0-6b043b07f941

Analysis Correlation Engine Documentation, Release 0.0.1

(continued from previous page)

>>> analysis.submit()
<ace_api.Analysis object at 0x7fbe81af66a0>

>>> analysis.status
'COMPLETE (Alerted with 0 detections)'

1.3.4 Downloading Cloudphish Results

Cloudphish keeps a cache of the URL content it downloads. In this example we will download the results of the URL
submitted in the previous example, which in this case is a malicious word document.

>>> ace_api.cloudphish_download(another_url, output_path='cp_result.raw')
True
>>> os.path.exists('cp_result.raw')
True

1.3.5 Downloading an Alert

You can use the ace_api.download() function to download an entire Alert. Below, we download an entire Alert
and have it written to a directory named by the Alert’s UUID.:

>>> uuid = cp_result['uuid']

>>> >>> uuid
'732ec396-ce20-463f-82b0-6b043b07f941'

>>> ace_api.download(uuid, target_dir=uuid)

Now, there is a new directory named ‘732ec396-ce20-463f-82b0-6b043b07f941’ in our current working directory
that contians all of the files and data from the alert with uuid 732ec396-ce20-463f-82b0-6b043b07f941. Use the
ace_api.load_analysis() function to load an alert into a new Analysis object.

1.4 ACE API

1.4.1 Python Library

A python library exits for intereacting with the ACE API. You can install it wil pip: pip3 install ace_api.

1.4.2 Common API

1.4.3 Alert API

submit

Submits a new alert to ACE. These go directly into the correlation engine for analysis and show up to analysts as alerts.

Parameters: alert - JSON dict with the following schema

1.4. ACE API 25

Analysis Correlation Engine Documentation, Release 0.0.1

{
'tool': tool_name,
'tool_instance': tool_instance_name,
'type': alert_type,
'description': alert description,
'event_time': time of the alert/event (in %Y-%m-%dT%H:%M:%S.%f%z format),
'details': free-form JSON dict of anything you want to include,
'observables': (see below),
'tags': a list of tags to add to the alert,

}

The observables field is a list of zero or more dicts with the following format

{
'type': The type of the observable,
'value': The value of the observable,
'time': The optional time of the observable (can be null),
'tags': Optional list of tags to add to the observable,
'directives': Optional list of directives to add to the observable,

}

To attach files to the alert use the field named file.

1.5 Some Background

If you’re curious about where ACE came from or the bigger picture of how ACE is meant to be used, the following
topics cover some concepts at a high level that should first be understood.

Additionally, John Davison gave a talk on the development of the ACE toolset at BSides Cincinnati in 2015 and covers
these same topics. You can watch his presentation here:

1.5.1 Driving Behavior

With the goal set at always detecting advanced attacks and attackers across an organization, you must have detection
point coverage across your entire attack surface. This can be challenging in a world of constraints, such as your
analysts’ time. Analysts cannot be inundated with an unmanageable number of alerts; nor should they be presented
with the same alert repeatedly. You need to manage and optimize the volume of alerts presented to analysts. The best
way to do this is to get a handle on your False Positive metrics and how those metrics should drive your hunting and
tuning behavior.

THE METRIC TO DRIVE: Assume the majority of all alerts are False Positive, then for each alert that is analyzed,
how long does it take the analyst to realize it is a False Positive?

Why does this metric matter? Because detection is hard and analyst time is highly valuable to a successful security
operation.

False Positive Metrics

What is a False Postive? Something that turns out to be nothing? Yes, but more than that, too.

False Positives, False Positive rates, and the average time it takes an analyst to disposition a False Positive are crucial
metrics for driving the right security ecosystem.

26 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

If your least experienced analyst can’t disposition a False Positive in seconds, then it’s going to be much harder to
both expand and maintain an in-depth coverage of your attack surface. This is, of course, assuming that your security
operation is constrained by time, money, and analyst sanity.

Hunting and Tuning!

Hunting is the active process of searching for maliciousness. From hunting, we develop hunts that are meant to
detect some specific form of maliciousness. A hunt could be looking for a strange process behavioral pattern, a Yara
signature, or just a search for some atomic indicators. When a hunt returns a result, we have a detection and need to
create an alert.

Hunts produce True Positives and False Positives. Tuning is the process of telling a hunt not to alert on something
we’ve already determined to be a False Positive. Tune out the False Positives.

Not sure when to hunt and tune? If the detection team can handle ‘X’ number of alerts in a day, and if ‘n’ is the number
of alerts your tools generate in a day:

• If n >= X then tune.

• If n < X then hunt and introduce more alerts for the analysts

Hunt + Tune == Coverage++

With an understanding of your False Positive metrics, hunting and tuning can be used to expand your attack surface
coverage.

1.6 Additional Features

The following are additional ACE features that are not necessary to understand when orienting an analyst with ACE
or didn’t quite fit in other areas of the documentation. If you’re here, it’s assumed that you’re familiar with the content
in the Getting Data into ACE and Analyst Orientation sections.

1.6.1 Events

An event in ACE is a collection of related alerts that require some response activities from your analysts. For example,
you can add several phish alerts that have the same malicious attachment to an event. The event denotes that your
analysts have some follow-up work to do on the alerts, such as remediating the email to remove it from the user’s
inbox or ensuring the user did not click any malicious links or open any malicious files.

We developed a sister project called Event Sentry that monitors ACE for events that were created and automatically
creates comprehensive wiki write-ups of the event. Other features of Event Sentry include:

• Detects types of malware using built-in and extendable detection modules.

• Detects kill chain phase by determining if a user clicked a link, submitted credentials, or opened a malware
sample.

• Extracts indicators from e-mails, sandbox reports, and other artifacts.

• Automatically uploads indicators, samples, and e-mails to CRITs and creates appropriate relationships between
them.

• Maintains an event repository containing copies of the ACE alerts and all their artifacts.

• Creates a shareable intel package containing a summary of the event including indicators, malware samples, and
emails.

See https://eventsentry.readthedocs.io/en/latest/ for more information on Event Sentry.

1.6. Additional Features 27

https://github.com/IntegralDefense/eventsentry
https://eventsentry.readthedocs.io/en/latest/

Analysis Correlation Engine Documentation, Release 0.0.1

1.6.2 Metrics

ACE’s Metrics page can be used to track and display metrics for alert triage operations. Currently, the following tables
can be generated:

Alert Quantities Count of alerts by disposition

Hours of Operation Cycle time averages and quantities by the time of day alerts were gener-
ated

Alert Cycle Times The average time it took to disposition alerts in business hours

Incidents Summary of incidents (an incident is an event that has progressed beyond DELIV-
ERY)

Events Summary of events

CRITS Indicator Stats Count of indicators by intel source and status

1.7 Administration Guide

1.7.1 Concepts

There are several concepts crucial to understanding how ACE works and how to use ACE. For the analyst, it’s important
to understand observables, tagging, and dispositioning. The administrator and developer needs to understand those
concepts as well, but additionally must understand ACE’s dependencies and its engine and modular architecture.

Engines

The ACE system is named after the system’s core engine, the Analysis Correlation Engine. However, there are
additional engines that interface with, utilize, or provide input to the core Analysis Correlation Engine. Below is a
table of the currently defined engines:

En-
gine

Description

ace The Alert Correlation Engine creates and submits alerts to the Analysis Correlation Engine
car-
bon_black

Collects binaries and files from CarbonBlack environments and runs them through ACE

bro-
tex_stream

Responsible for analyzing tar files extracted from SMTP and HTTP streams via the Brotex system1. Ex-
tracted emails are submitted to the Email Scanning Engine. Extracted HTTP streams are submitted to the
HTTP Scanning Engine.

email_scannerThe Email Scanning Engine is configured to fully analyze and scan emails from any available source. There
is special support for emails submitted from Office365 (which includes the actual email as an attachment
inside the email). The two sources of input for the Email Scanning Engine are the emails parsed out of tar
files from the Brotex Engine, which are submitted via local filesystem, and emails collected from the ACE
Mailbox Client systems2, which are submitted via custom SSL connections. Emails that have any alert-able
properties are submitted to the Alert Correlation Engine.

http_scannerProcesses and scans individual HTTP requests for malicious content. Alert-able requests are submitted to
the Alert Correlation Engine.

cloud-
phish

Processes, analyzes, crawls, and scans content pulled from received URLs. Maintains a cache of results and
a URL whitelisting system. Alert-able URLs are sent to the Alert Correlation Engine. Cloudphish has an
API.

28 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

Modules

ACE modules automate something that an analyst has previously done manually. These modules do all “the work”
on observables; each module knows which types of observables it works with and “knows what to do” with those
observables. Modules can be built to do anything that you can automate. Each ACE engine knows which ACE
modules to work with, and modules can perform work for many different engines.

Recursive Analysis

With the introduction of observables, engines, and modules, you can begin to understand how ACE performs its
recursive analysis and correlation.

For example, given observable type ‘file’, each ACE module that acts on an observable of type file will be called to
perform its analysis. From the output of each module’s analysis, ACE will discover and create new observables, which,
kicks off more modules to perform analysis. This recursive process will continue until all observables are discovered,
analyzed, and correlated, or, until a specified alert correlation timeout is reached. ACE’s default timeout limit for
recursive alert analysis is 15 minutes, however, a warning will be logged if alert analysis exceeds five minutes. These
values are configurable under ACE’s ‘global’ configuration section.

1.7.2 Turning on Engines

When installed, ACE likely started several engines and modules by default. Almost certainly, the correlation engine
was started. You can see below how to stop and start several different engines and modules. If you want to try and
start all engines at the same time, the following command will accomplish that:

$ /opt/ace/bin/start-ace

Correlation Engine

The correlation engine is essential:

$ /opt/ace/bin/start-correlation-engine

Email Scanner

The email scanning engine will detect any file observable that is compliant with rfc822.

$ /opt/ace/bin/start-email-scanning-engine

CloudPhish

Make sure engine_cloudphish is enabled in saq.ini. You may need to add the following enabled variable:

[engine_cloudphish]
enabled = yes

Also in saq.ini, make sure the following config item has this value; unless you know your situation is different.
You may have to create this section:

1 See the Brotex systems on IntegralDefense’s github page: https://github.com/IntegralDefense
2 The ACE Mailbox Client is open sourced at https://github.com/IntegralDefense/amc.git

1.7. Administration Guide 29

https://github.com/IntegralDefense
https://github.com/IntegralDefense/amc.git

Analysis Correlation Engine Documentation, Release 0.0.1

[analysis_module_cloudphish]
cloudphish.1 = https://localhost/ace/cloudphish

The CloudPhish engine depend on the CrawlPhish analysis module. So make sure the analysis_module_crawlphish
is turned on in saq.ini. You may have to create this section:

[analysis_module_crawlphish]
enabled = yes

Next, make sure the following three files exist. Example content is given for each file. First, /opt/ace/etc/
crawlphish.whitelist:

url shorteners and more
anonfile.xyz
bit.ly
goo.gl
ow.ly
is.gd
dd.tt
dropbox.com
tinyurl.com
zip.net
drive.google.com
wetransfer.com
hyperurl.co
1drv.ms
onedrive.live.com
amazonaws.com

Second, etc/crawlphish.path_regex::

possible file extensions for trojans
\.
→˓(pdf|zip|scr|js|cmd|bat|ps1|doc|docx|xls|xlsx|ppt|pptx|exe|vbs|vbe|jse|wsh|cpl|rar|ace|hta)
→˓$

Finally, etc/crawlphish.blacklist:

ignore loopback
127.0.0.1
RFC 1918
10.0.0.0/8
172.16.0.0/12
192.168.0.0/16
put more domains and IPs you want to avoide

Finally, everything is ready to turn on the cloudphish engine:

$ bin/start-cloudphish

1.7.3 Enabling Modules

Yara Scanner

First, make sure the analysis_module_yara_scanner_v3_4 section in /opt/ace/etc/saq.ini is enabled. Then
create a /opt/signatures directory:

30 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

$ mkdir /opt/signatures
$ cd /opt/signatures

Now place your yara signature directories in /opt/signatures/<your yara directories>.

Create a symlink for ACE to find your signatures:

$ ln -s /opt/signatures $SAQ_HOME/etc/yara

Start the yara module:

$ /opt/ace/bin/start-yss

Live Renderer

The live browser rendering module will try to render a png image of any html file it’s given. This can be particularly
helpful for viewing email html content. Keep security in-mind when implementing this module.

To configure the module, execute the following commands. NOTE: The following instructions explain how to set up
the renderer on localhost, but you can set up the rendered on a dedicated server as well.

Create a user named “cybersecurity”:

$ sudo adduser cybersecurity

Generate a ssh key as the ace user:

$ ssh-keygen -t rsa -b 4096

Add this entry to your ace ssh config:

$ cd /home/ace
$ vim .ssh/config

Host render-server
HostName localhost
port 22
User cybersecurity
IdentityFile /home/ace/.ssh/id_rsa

Set up the cybersecurity account:

$ sudo su - cybersecurity
$ cd && mkdir .ssh && mkdir tmp
$ cat /home/ace/.ssh/id_rsa.pub >> .ssh/authorized_keys
$ ln -s /opt/ace/render render
$ exit

Add localhost as a known ssh host for the ace user:

$ ssh-keyscan -H localhost >> .ssh/known_hosts

Run the install script:

$ cd /opt/ace/render/ && ./install

Download the most recent Chrome driver from https://sites.google.com/a/chromium.org/chromedriver/downloads:

1.7. Administration Guide 31

https://sites.google.com/a/chromium.org/chromedriver/downloads

Analysis Correlation Engine Documentation, Release 0.0.1

$ cd /opt/ace/render
$ wget https://chromedriver.storage.googleapis.com/<version number goes here>/
→˓chromedriver_linux64.zip
$ unzip chromedriver_linux64.zi

Finally, make sure the following (at a minimum) is in your saq.ini file:

[analysis_module_live_browser_analyzer]
remote_server = render-server
enabled = yes

Now, restart the correlation engine and render away.

1.8 Development Guide

1.9 Developer README

This document explains the reasons behind some of the stranger design decisions made for this project.

1.9.1 SAQ = ACE

When the project first started we called it the Simple Alert Queue (SAQ). It was later renamed to the Analysis Corre-
lation Engine (ACE). There are still a lot of references to SAQ left, including the name of the core library (import
saq) and the SAQ_HOME environment variable.

1.9.2 Eveything was initially command line driven.

The original UI of the project was CLI. So there’s still a lot of that left. Most of what you can do can also be done via
the command line, including full analysis of observables.

Along those lines, it was also meant to be able to be executed from any directory. This is probably no longer true, but
there are a number of times where the code assumes it is running in some other directory.

1.9.3 This was an internal project.

There’s a number of basic things that you would expect would exist that don’t. For example, there’s no way to manage
users from the GUI. It must be done from the command line. And even then, there’s no support to delete a user. We
didn’t have any turnover for 5 years so this was never a requirement.

And the along those lines there’s little effort put into account security internally. There are no “roles” or “administra-
tors”.

1.9.4 The database came later.

Very little of the analysis data is stored in the database.

From the beginning of the project I wanted the data to be stored in a schema-less JSON structure on the filesystem. This
would allow analysts to simply grep the files for whatever they were looking for. I (reluctantly) looked at MongoDB
as a way to index the data and speed up the searches. This was quickly abandoned (it was slowing down development
for various reasons.) Later when the GUI was added to the project we started storing data in MySQL.

32 Chapter 1. Major Features

Analysis Correlation Engine Documentation, Release 0.0.1

I knew that we would be modifying this system a lot. So trying to create a database schema that encompassed
everything we would ever want to do was not realisitic. Making major changes to large database schemas is no easy
task.

Today the database is used to manage the workload of the collectors and engines, and to provide the GUI (and API)
for the analysts. The data.json JSON files that hold the results of the analysis are actually the official records of
the analysis. The database is kept in sync with these files.

At some point it would make sense to index these JSON files in a system like Elasticsearch.

1.9.5 Unit testing.

My one regret with this project was not creating unit tests as I went. I didn’t start adding unit tests until we were ~4
years into the project. Unit test coverage is not what it shoud be, but I would expect that to improve over time.

1.9.6 Final words.

I think it’s worth noting that this project was created to enable and improve our analysts. We were not designing a
product. We were also moving as quickly as we saw threat actors change tactics. As soon as we saw a new techique
being used, we would quickly implement a feature to ACE that would allow us to detect that. So there’s a number of
places where the code looks hastily thrown together.

Hopefully this file helps to explain some of the oddness you may see in the code.

1.9. Developer README 33

Analysis Correlation Engine Documentation, Release 0.0.1

34 Chapter 1. Major Features

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

35

	Major Features
	Installation + Adding Data
	Super fast How-To
	Detailed Installation
	Troubleshooting & Help
	Getting Data into ACE

	Analyst Orientation - Start Here
	Quick Concept Touchpoint
	GUI Overview
	Working Alerts

	ACE API Examples
	Connect to a Server
	Submitting data to ACE
	Forcing Alert Creation
	Downloading Cloudphish Results
	Downloading an Alert

	ACE API
	Python Library
	Common API
	Alert API

	Some Background
	Driving Behavior

	Additional Features
	Events
	Metrics

	Administration Guide
	Concepts
	Turning on Engines
	Enabling Modules

	Development Guide
	Developer README
	SAQ = ACE
	Eveything was initially command line driven.
	This was an internal project.
	The database came later.
	Unit testing.
	Final words.

	Indices and tables

